Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 524
Filtrar
1.
Int J Biol Macromol ; 265(Pt 2): 131016, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38513908

RESUMO

Alpha-2-macroglobulin (A2M) is an extracellular macromolecule mainly known for its role as a broad-spectrum protease inhibitor in mammals. However, the immune recognition and regulation mechanisms of A2M in invertebrates are still not well investigated. In the current study, the role of sea cucumber Apostichopus japonicus A2M in the regulation of innate immune responses was explored. We found that AjA2M promotes phagocytosis of Vibrio splendidus in coelomocytes of sea cucumber. Then two major functional structural domains of AjA2M, the thioester domain (TED) and the receptor-binding structural domain (RBD) were cloned. It was found that the AjA2M-TED binds to pathogens while causing Vibrio splendidus aggregation; the AjA2M-RBD interacts with the Glucose Regulated Protein 78 (AjGRP78), subsequently AjGRP78 accelerates the degradation of Vibrio splendidus in lysosomes by facilitating polymerisation and rearrangement of the cytoskeleton. Collectively, the findings together suggest that A2M-GRP78 axis mediates immune signaling pathway of phagocytosis and AjA2M has been characterized to play an essential crucial role in antibacterial immune responses of invertebrates.


Assuntos
alfa 2-Macroglobulinas Associadas à Gravidez , Pepinos-do-Mar , Stichopus , Vibrio , Animais , Feminino , Gravidez , Chaperona BiP do Retículo Endoplasmático , Fagocitose , Imunidade Inata , Mamíferos
2.
J Agric Food Chem ; 72(15): 8798-8804, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38548625

RESUMO

Fibrillin is an important structural protein in connective tissues. The presence of fibrillin in sea cucumber Apostichopus japonicus is still poorly understood, which limits our understanding of the role of fibrillin in the A. japonicus microstructure. The aim of this study was to clarify the presence of fibrillin in the sea cucumber A. japonicus body wall. Herein, the presence of fibrillin in sea cucumber A. japonicus was investigated by utilizing targeted proteomics and visualization strategies. The contents of three different isoforms of fibrillin with high abundance in A. japonicus were determined to be 0.96, 2.54, and 0.15 µg/g (wet base), respectively. The amino acid sequence of fibrillin (GeneBank number: PIK56741.1) that started at position 631 and ended at position 921 was selected for cloning and expressing antigen. An anti-A. japonicus fibrillin antibody with a titer greater than 1:64 000 was successfully obtained. It was observed that the distribution of fibrillin in the A. japonicus body wall was scattered and dispersed in the form of fibril bundles at the microscale. It further observed that fibrillin was present near collagen fibrils and some entangled outside the collagen fibrils at the nanoscale. Moreover, the stoichiometry of the most dominant collagen and fibrillin molecules in A. japonicus was determined to be approximately 250:1. These results contribute to an understanding of the role of fibrillin in the sea cucumber microstructure.


Assuntos
Pepinos-do-Mar , Stichopus , Animais , Stichopus/genética , Stichopus/química , Pepinos-do-Mar/metabolismo , Proteômica , Fibrilinas , Colágeno/química
3.
Fish Shellfish Immunol ; 148: 109491, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38490346

RESUMO

As is well known, apoptosis is an important form of immune response and immune regulation, particularly playing a crucial role in combating microbial infections. Apoptosis-inducing factor 1 (AIF-1) is essential for apoptosis to induce chromatin condensation and DNA fragmentation via a caspase-independent pathway. The nuclear translocation of AIF-1 is a key step in apoptosis but the molecular mechanism is still unclear. In this study, the homologous gene of AIF-1, named AjAIF-1, was cloned and identified in Apostichopus japonicus. The mRNA expression of AjAIF-1 was significantly increased by 46.63-fold after Vibrio splendidus challenge. Silencing of AjAIF-1 was found to significantly inhibit coelomocyte apoptosis because the apoptosis rate of coelomocyte decreased by 0.62-fold lower compared with the control group. AjAIF-1 was able to promote coelomocyte apoptosis through nuclear translocation under the V. splendidus challenge. Moreover, AjAIF-1 and Ajimportin ß were mainly co-localized around the nucleus in vivo and silencing Ajimportin ß significantly inhibited the nuclear translocation of AjAIF-1 and suppressed coelomocyte apoptosis by 0.64-fold compared with control. In summary, nuclear translocation of AjAIF-1 will likely mediate coelomocyte apoptosis through an importin ß-dependent pathway in sea cucumber.


Assuntos
Stichopus , Vibrio , Animais , Stichopus/genética , beta Carioferinas , Imunidade Inata/genética , Fator de Indução de Apoptose/genética , Vibrio/fisiologia , Apoptose
4.
J Immunol ; 212(8): 1319-1333, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38426898

RESUMO

N 6-methyladenosine (m6A), the most prevalent internal modification in eukaryotic RNA, was able to mediate circular RNA (circRNA) function in many immune processes. Nevertheless, the functional role of m6A-modified circRNAs in innate immunity of invertebrates remained unclear. In this study, we identified m6A-modified circRNA388 from cultured sea cucumber (Apostichopus japonicus) coelomocytes, which was mainly detected in cytoplasm after Vibrio splendidus infection. A knockdown assay indicated that cytoplasm circRNA388 promoted coelomocyte autophagy and decreased the number of intracellular V. splendidus. Mechanistically, the circRNA388 in the cytoplasm directly sponged miR-2008 to block its interaction with Unc-51-like kinase 1 from A. japonicus (AjULK) and further promoted autophagy to resist V. splendidus infection. More importantly, we found that m6A modification was vital to circRNA388 nuclear export with YTH domain-containing protein 1 from A. japonicus (AjYTHDC1) as the reader. AjYTHDC1 facilitated the nuclear export of m6A-modified circRNA388 via interaction with exportin-1 (chromosomal maintenance 1) from A. japonicus (AjCRM1). Knockdown of AjCRM1 could significantly decrease the content of cytoplasm circRNA388. Overall, our results provide the first evidence that nuclear export of m6A-modified circRNA388 is dependent on the novel AjCRM1 to our knowledge, which was further promoted coelomocyte autophagy by miR-2008/AjULK axis to clear intracellular V. splendidus.


Assuntos
Adenina/análogos & derivados , MicroRNAs , Stichopus , Vibrioses , Vibrio , Animais , Stichopus/genética , Transporte Ativo do Núcleo Celular , Imunidade Inata/genética , Autofagia , MicroRNAs/genética , MicroRNAs/metabolismo
5.
Ecotoxicol Environ Saf ; 273: 116099, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38422788

RESUMO

Sulfamethoxazole (SMZ) is a frequently detected antibiotic in the environment, and there is a growing concern about its potential toxic effects on aquatic organisms. sea cucumber (Apostichopus japonicas) is a benthic invertebrate whose gut acts as a primary immune defense and serves critical protective barrier. In this study, growth performance, histology, gut microbiota, and metabolomics analyses were performed to investigate the toxic response in the intestine of sea cucumber effects caused by SMZ stress for 56 d by evaluating with different concentrations of SMZ (0, 1.2×10-3, and 1.2 mg/L). The weight gain rate of sea cucumbers under SMZ stress showed significant decrease, indicating that the growth of sea cucumbers was hindered. Analysis of the intestinal morphological features indicated that SMZ stimulation resulted in atrophy of the sea cucumber gut. In the 1.2×10-3 mg/L concentration, the thickness of muscle and mucosal layers was reduced by 12.40% and 21.39%, while in the 1.2 mg/L concentration, the reductions were 35.08% and 26.98%. The abundance and diversity of sea cucumber intestinal bacteria decreased significantly (P < 0.05) under the influence of SMZ. Notably, the intestinal bacteria of sea cucumber became homogenized with the increase in SMZ concentration, and the relative abundance of Ralstonia reached 81.64% under the stress of 1.2 mg/L concentration. The SMZ stress significantly impacted host metabolism and disrupted balance, particularly in L-threonine, L-tyrosine, neuronic acid, piperine, and docosapentaenoic acid. SMZ leads to dysregulation of metabolites, resulting in growth inhibition and potential inflammatory responses that could adversely affect the normal activities of aquatic organisms. Further metabolic pathway enrichment analyses demonstrated that impaired biosynthesis of unsaturated fatty acids and aminoacyl-tRNA biosynthesis metabolic pathway were major reasons for SMZ stress-induced intestinal bacteria dysbiosis. This research aims to provide some theoretical evidence for the ecological hazard assessment of antibiotics in water.


Assuntos
Pepinos-do-Mar , Stichopus , Animais , Sulfametoxazol/toxicidade , Sulfametoxazol/metabolismo , Metabolômica , Bactérias/genética
6.
Sci Rep ; 14(1): 4886, 2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-38418859

RESUMO

Morphologically cryptic and pseudo-cryptic species pose a challenge to taxonomic identification and assessments of species diversity and distributions. Such is the case for the sea cucumber Stichopus horrens, commonly confused with Stichopus monotuberculatus. Here, we used mitochondrial cytochrome oxidase subunit I (COI) and microsatellite markers to examine genetic diversity in Stichopus cf. horrens throughout the Philippine archipelago, to aid species identification and clarify species boundaries. Phylogenetic analysis reveals two recently diverged COI lineages (Clade A and Clade B; c. 1.35-2.54 Mya) corresponding to sequence records for specimens identified as S. monotuberculatus and S. horrens, respectively. Microsatellite markers reveal two significantly differentiated genotype clusters broadly concordant with COI lineages (Cluster 1, Cluster 2). A small proportion of individuals were identified as later-generation hybrids indicating limited contemporary gene flow between genotype clusters, thus confirming species boundaries. Morphological differences in papillae distribution and form are observed for the two species, however tack-like spicules from the dorsal papillae are not a reliable diagnostic character. An additional putative cryptic species was detected within Clade B-Cluster 2 specimens warranting further examination. We propose that these lineages revealed by COI and genotype data be referred to as Stichopus cf. horrens species complex.


Assuntos
Pepinos-do-Mar , Stichopus , Humanos , Animais , Pepinos-do-Mar/genética , Stichopus/genética , Equinodermos/genética , Filogenia , Repetições de Microssatélites/genética
7.
Environ Sci Pollut Res Int ; 31(6): 9831-9843, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38198086

RESUMO

As an important input of environmental micropollutants into aquaculture environment, feed is now considered to be a critical factor in shaping gastrointestinal evacuation characteristics of animals. We analyzed the gastrointestinal evacuation characteristics and gut bacteria of Apostichopus japonicus within 30 h after feeding in recirculating aquaculture system (RAS) and explored the evacuation mechanism interacting by bacteria. The Gauss model was the most precise gastrointestinal evacuation curve, and 80% of gastrointestinal evacuation time was 27.81 h after feeding. Linear discriminant analysis effect size analysis revealed that gut microbial abundance associated significantly with time (P < 0.05), and 42 biomarkers that could predict gastrointestinal evacuation were totally detected, such as Lutibacter and Vibrio. Biomarkers at 25 h after feeding were related to harmful bacteria. A dynamic response between gastrointestinal content ratio and gut microbial abundance was detected. Taken together, we could discharge sewage about 25 h after feeding and carry out the next round of feeding activities.


Assuntos
Microbioma Gastrointestinal , Stichopus , Vibrio , Animais , Trato Gastrointestinal , Vibrio/fisiologia , Biomarcadores
8.
Mar Environ Res ; 195: 106369, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38262135

RESUMO

Seawater temperature change is an important concern for seed production and pond culture of sea cucumbers. The present study found that tentacle activity frequency was significantly lower in sea cucumbers exposed to continuous and rapid temperature increases than that of those at ambient temperature. Feeding behavior directly determines food intake, and further affects physiology and growth efficiency of sea cucumbers. This means that the decline in feeding caused by continuous and rapid temperature increases needs to be addressed in sea cucumber aquaculture. However, a sudden temperature change of 5 °C had no significant effect on behaviors of sea cucumbers. This indicates that continuous temperature increases, rather than a sudden increase, result in behavioral impacts on sea cucumbers. Therefore, we recommend aqua-farmers reduce the feeding amount for sea cucumbers during continuous and rapid temperature increases. In the present study, feeding behavior was significantly higher in sea cucumbers fed with 3% dietary tryptophan than that of those fed with 0% and 5% dietary tryptophan. This indicates that 3% dietary tryptophan increases the food intake of sea cucumbers, and mitigates the feeding decline caused by continuous and rapid temperature increase. This indicates that tryptophan has the potential to promote the feeding of sea cucumbers in seed production and pond culture. Adhesion capacity of sea cucumbers fed with 5% dietary tryptophan was significantly higher than that of individuals fed with 0% and 3% dietary tryptophan. This suggests that dietary tryptophan increases the feeding of sea cucumbers exposed to continuous and rapid temperature increases in pond culture and seed production. In addition, this study found that sea cucumbers fed with 3% dietary tryptophan had higher intestinal colony richness under the continuously rapid temperature change. The present study provides an effective method to improve adhesion behavior and to alleviate the impacts on feeding behavior for seed production and pond culture of sea cucumbers exposed to continuous and rapid temperature increases.


Assuntos
Pepinos-do-Mar , Stichopus , Humanos , Animais , Stichopus/fisiologia , Suplementos Nutricionais/análise , Triptofano , Temperatura , Imunidade Inata , Água do Mar
9.
Artigo em Inglês | MEDLINE | ID: mdl-38237259

RESUMO

Steroids play a vital role in animal survival, promoting growth and development when administered appropriate concentration exogenously. However, it remains unclear whether steroids can induce gonadal development and the underlying mechanism. This study assessed sea cucumber weights post-culturing, employing paraffin sections and RNA sequencing (RNA-seq) to explore gonadal changes and gene expression in response to exogenous steroid addition. Testosterone and cholesterol, dissolved in absolute ethanol, were incorporated into sea cucumber diets. After 30 days, testosterone and cholesterol significantly increased sea cucumber weights, with the total weight of experimental groups surpassing the control. The testosterone-fed group exhibited significantly higher eviscerated weight than the control group. In addition, dietary steroids influenced gonad morphology and upregulated genes related to cell proliferation,such as RPL35, PC, eLF-1, MPC2, ADCY10 and CYP2C18. Thees upregulated differentially expressed genes were significantly enriched in the organic system, metabolism, genetic information and environmental information categories. These findings imply that steroids may contribute to the growth and the process of genetic information translation and protein synthesis essential for gonadal development and gametogenesis.


Assuntos
Pepinos-do-Mar , Stichopus , Animais , Stichopus/genética , Pepinos-do-Mar/genética , Aumento de Peso , Proliferação de Células , Gametogênese , Testosterona , Colesterol
10.
Carbohydr Polym ; 328: 121722, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38220325

RESUMO

This study aimed to investigate the alleviative effects of fucosylated chondroitin sulfate from sea cucumber Stichopus chloronotus (fCSSc) on the intestinal barrier injury and oxidative stress damage in vitro and in vivo. The results showed that fCS-Sc protected the intestinal barrier and improved the antioxidant function in H2O2 damaged Caco-2 cells via up-regulating the tight junction proteins and activating Keap1-Nrf2-ARE antioxidant pathway. Furthermore, administration fCS-Sc could ameliorate the weight loss and spleen index decrease in Cyclophosphamide (Cy) treated mice, improve the expressions of ZO-1, Claudin-1, Nrf2, SOD, and NQO-1 in Cy damaged colon tissue, showing significant protective effects against intestinal barrier damage and oxidative stress in vivo. fCS-Sc intervention also alleviated the gut microbiota disorder though increasing the richness and diversity of intestinal bacteria, regulating the structural composition of gut microbiota. fCS-Sc promoted the relative abundance of beneficial microbiota and inhibited the growth of harmful bacteria. This study provided a theoretical basis for the application of fCS-Sc as a prebiotic in chemotherapy.


Assuntos
Pepinos-do-Mar , Stichopus , Humanos , Animais , Camundongos , Stichopus/química , Pepinos-do-Mar/química , Proteína 1 Associada a ECH Semelhante a Kelch , Antioxidantes , Células CACO-2 , Peróxido de Hidrogênio , Fator 2 Relacionado a NF-E2 , Sulfatos de Condroitina/farmacologia , Sulfatos de Condroitina/química , Estresse Oxidativo
11.
Mar Environ Res ; 194: 106330, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38171258

RESUMO

Global temperatures have risen as a result of climate change, and the resulting warmer seawater will exert physiological stresses on many aquatic animals, including Apostichopus japonicus. It has been suggested that the sensitivity of aquatic poikilothermal animals to climate change is closely related to mitochondrial function. Therefore, understanding the interaction between elevated temperature and mitochondrial functioning is key to characterizing organisms' responses to heat stress. However, little is known about the mitochondrial response to heat stress in A. japonicus. In this work, we investigated the morphological and functional changes of A. japonicus mitochondria under three representative temperatures, control temperature (18 °C), aestivation temperature (25 °C) and heat stress temperature (32 °C) temperatures using transmission electron microscopy (TEM) observation of mitochondrial morphology combined with proteomics and metabolomics techniques. The results showed that the mitochondrial morphology of A. japonicus was altered, with decreases in the number of mitochondrial cristae at 25 °C and mitochondrial lysis, fracture, and vacuolization at 32 °C. Proteomic and metabolomic analyses revealed 103 differentially expressed proteins and 161 differential metabolites at 25 °C. At 32 °C, the levels of 214 proteins and 172 metabolites were significantly altered. These proteins and metabolites were involved in the tricarboxylic acid (TCA) cycle, substance transport, membrane potential homeostasis, anti-stress processes, mitochondrial autophagy, and apoptosis. Furthermore, a hypothetical network of proteins and metabolites in A. japonicus mitochondria in response to temperature changes was constructed based on proteomic and metabolomic data. These results suggest that the dynamic regulation of mitochondrial energy metabolism, resistance to oxidative stress, autophagy, apoptosis, and mitochondrial morphology in A. japonicus may play important roles in the response to elevated temperatures. In summary, this study describes the response of A. japonicus mitochondria to temperature changes from the perspectives of morphology, proteins, and metabolites, which provided a better understanding the mechanisms of mitochondrial regulation under environment stress in marine echinoderms.


Assuntos
Stichopus , Animais , Stichopus/metabolismo , Temperatura , Proteômica/métodos , Estresse Fisiológico , Mitocôndrias
12.
J Food Sci ; 89(1): 320-329, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38051010

RESUMO

The main objective of this work was to characterize the acid-soluble collagen (ASC) and pepsin-soluble collagen (PSC) from the body wall of the sea cucumber scientifically called, Stichopus hermanni. For the extraction of ASC and PSC, the pre-treated sea cucumber body walls were subjected to 0.5 M acetic acid and 5 g L-1 pepsin, respectively. The yield of ASC (7.30% ± 0.30%) was found to be lower than the PSC (23.66% ± 0.15%), despite both ASC and PSC having similar chemical compositions except for the quantity of protein. The collagens produced from ASC and PSC show maximum peaks on ultraviolet-visible spectroscopic profiles at wavelengths of 230 and 235 nm, respectively, with no significant difference in the maximum temperature (Tmax ) of the extracted ASC and PSC. The ASC's coloration was whiter than that of the PSC. As a result, the collagen obtained from the body wall of the sea cucumber showed promise for usage as a substitute for collagen derived from marine sources. PRACTICAL APPLICATION: The two most popular methods of collagen extraction were acid hydrolysis and enzymatic hydrolysis. To determine whether the extracted collagen is a suitable substitute for animal collagen in different industries, it is required to characterize its physicochemical qualities. This study discovered a new application for marine collagen in the food industry: The sea cucumber has collagen with a greater yield in pepsin extraction with good physicochemical qualities.


Assuntos
Pepinos-do-Mar , Stichopus , Animais , Stichopus/química , Stichopus/metabolismo , Pepsina A/metabolismo , Pepinos-do-Mar/metabolismo , Colágeno/química , Ácidos/química
13.
Fish Shellfish Immunol ; 144: 109263, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38040134

RESUMO

Pattern recognition receptors (PRRs) are the first line of immune defense in invertebrates against pathogen infection; they recognize pathogens and transmit signals to downstream immune pathways. Among these, peptidoglycan recognition proteins (PGRPs) are an important family in invertebrates that generally comprise of complicated isoforms. A comprehensive understanding of PGRPs in evolutionarily and economically important marine invertebrates, such as the sea cucumber, Apostichopus japonicus, is crucial. Previous studies have identified two PGRPs in sea cucumber, AjPGRP-S and AjPGRP-S1, and another novel short-type PGRP, AjPGRP-S3, was additionally identified here. The full-length cDNA sequence of AjPGRP-S3 was obtained here by PCR-RACE, followed by which showed its gene expression analyses by in situ hybridization that showed it to be relatively highly expressed in coelomocytes and tube feet. Based on an analysis of the recombinant protein, rAjPGRP-S3, a board-spectrum pathogen recognition ability was noted that covered diverse Gram-negative and -positive bacteria, and fungi. Moreover, according to the results of yeast two-hybridization, it was suggested that rAJPGRP-S3 interacted with multiple immune-related factors, including proteins involved in the complement system, extracellular matrix, vesicle trafficking, and antioxidant system. These findings prove the important functions of AjPGRP-S3 in the transduction of pathogen signals to downstream immune effectors and help explore the functional differences in the AjPGRP isoforms.


Assuntos
Pepinos-do-Mar , Stichopus , Animais , Imunidade Inata/genética , Polissacarídeos/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
14.
Arch Pharm (Weinheim) ; 357(1): e2300427, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37853667

RESUMO

Apostichopus japonicus, also known as Stichopus japonicus, with medicinal and food homologous figures, is a globally recognized precious ingredient with extremely high nutritional value. There is no relevant review available through literature search, so this article selects the research articles through the keywords "sea cucumber" and "Apostichopus japonicus (Stichopus japonicus)" in six professional databases, such as Wiley, PubMed, ScienceDirect, ACS, Springer, and Web of Science, from 2000 to the present, summarizing the extraction, isolation, and purification methods for the four major categories (polysaccharides, proteins and peptides, saponins, and other components) of the A. japonicus chemical substances and 10 effective biological activities of A. japonicus. Included are anticoagulation, anticancer/antitumor activities, hematopoiesis, regulation of gut microbiota, and immune regulatory activities that correspond to traditional efficacy. Literature support is provided for the development of medicines and functional foods and related aspects that play a leading role in future directions.


Assuntos
Saponinas , Pepinos-do-Mar , Stichopus , Animais , Stichopus/química , Stichopus/fisiologia , Relação Estrutura-Atividade , Alimentos
15.
Int J Biol Macromol ; 254(Pt 2): 127801, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37918586

RESUMO

The microRNA novel-3 (miRn-3) is a 23-nt small endogenous noncoding RNA of unknown function. To enrich our knowledge of the regulatory function of miRn-3 in the process of wound healing, the sea cucumber Apostichopus japonicus was used as a target model in this study. Gelsolin (AjGSN), a potential target gene of miRn-3, was cloned and characterized, and the interaction between miRn-3 and AjGSN was verified. The function of the miRn-3/AjGSN axis in regulating cutaneous wound healing was explored in the sea cucumber A. japonicus. The results showed that 1) the full-length cDNA of AjGSN was 2935 bp, with a high level of sequence conservation across the echinoderms; 2) miRn-3 could bind to the 3'UTR of AjGSN and negatively regulate the expression of AjGSN; 3) overexpression of miRn-3 and inhibition of the expression of AjGSN suppressed cutaneous wound healing in A. japonicus. In general, all observations of this study suggest that miRn-3 plays an important role in the early process of cutaneous wound healing by negatively targeting AjGSN, and that it may be a potential biomarker in wound healing.


Assuntos
MicroRNAs , Pepinos-do-Mar , Stichopus , Animais , Stichopus/genética , Stichopus/metabolismo , Pepinos-do-Mar/genética , Pepinos-do-Mar/metabolismo , Gelsolina/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Cicatrização/genética , Imunidade Inata
16.
Biol Trace Elem Res ; 202(4): 1767-1775, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37438547

RESUMO

Zinc is an essential micronutrient for organisms involved in regulating various biological processes. This study evaluated the effects of dietary zinc on growth performance, digestive enzyme activities, antioxidant status, and immune responses of sea cucumber Apostichopus japonicus. Five experimental diets were formulated with graded levels of zinc (0, 20, 40, 60, and 80 mg/kg, respectively), and the actual dietary zinc values were 31.4, 51.0, 68.2, 91.9, and 110.8 mg/kg diet, respectively. Sea cucumbers were fed with diets for 2 months. The results showed the growth performance, amylase, and trypsin activities of sea cucumber increased significantly with zinc supplementation, and the best growth performance and enzyme activities were observed at 40 mg/kg zinc diet. Zinc supplementation significantly increased activities of superoxide dismutase, catalase, anti-superoxide anion, and inhibiting hydroxyl radical, while significantly reduced the malondialdehyde content. Furthermore, the higher zinc supplementation levels resulted in significantly upregulated immune-related genes of hsp90, p105, rel, and lsz, suggesting that excessive zinc caused oxidative stress. The broken-line regression analysis of specific growth rate indicated dietary zinc requirement in juvenile sea cucumber was ~ 66.3 mg/kg diet. Overall, dietary zinc contributes to the growth and immune resistance of juvenile sea cucumber, and our study will provide insights into the rational use of dietary zinc in aquaculture.


Assuntos
Pepinos-do-Mar , Stichopus , Animais , Antioxidantes/farmacologia , Suplementos Nutricionais/análise , Imunidade Inata , Dieta , Zinco/farmacologia , Ração Animal/análise
17.
Artigo em Inglês | MEDLINE | ID: mdl-38065305

RESUMO

Activator protein-1 subfamily member c-Fos wields significant influence over cellular activities, such as regulation of cell growth and division, cell death, and immune responses under various extracellular situations. In this study, the full-length c-Fos of sea cucumber, Apostichopus japonicus (Ajfos) was successfully cloned and analyzed. The anticipated 306 amino acid sequences of Ajfos displayed a basic-leucine zipper (bZIP) domain, similar to invertebrate counterparts. In addition, the qPCR results suggested Ajfos expressed in all tissues, with the highest level in coelomocytes from polian vesicle (vesicle lumen cells), followed by coelomocytes from coelom (coelomocytes). Moreover, the expression levels of Ajfos in the coelomocytes and vesicle lumen cells of sea cucumber showed significant changes after the Vibrio splendidus challenge, especially reaching a peak at 6 h. Compared with the silencing negative control RNA interference (siNC) group, silencing Ajfos (siAjfos) in vivo decreased the downstream proliferation-related gene expression of vesicle lumen cells after infection with V. splendidus while no significant influence was observed on coelomocytes. Furthermore, the proliferation proportion of vesicle lumen cells in the siAjfos group was significantly reduced under pathogen stimulation conditions. Finally, based on the fluctuation trend of total coelomocyte density (TCD) from coelom and polian vesicle previously discovered, it is evident that Ajfos played a critical role in facilitating the swift proliferation of vesicle lumen cells in response to V. splendidus stimulation. Altogether, this research provided an initial reference of the function of Ajfos in echinoderms, unveiling its participation in host coelomocyte proliferation of sea cucumbers during bacterial challenges.


Assuntos
Pepinos-do-Mar , Stichopus , Animais , Stichopus/genética , Fatores de Transcrição , Pepinos-do-Mar/genética , Regulação da Expressão Gênica , Clonagem Molecular , Imunidade Inata/genética
18.
Artigo em Inglês | MEDLINE | ID: mdl-38065309

RESUMO

Sea cucumber Apostichopus japonicus displays the typical circadian rhythms. This present study investigated the molecular regulation of clock genes, as well as monoamines and melatonin, in multiple tissues of A. japonicus, responding to the photoperiod. In order to determine their pivotal role in circadian rhythms, the crucial clock genes, namely AjClock, AjArnt1, AjCry1, and AjTimeless, were identified and a comprehensive analysis of their expressions across various tissues in adult A. japonicus was conducted, revealing the potential existence of central and peripheral oscillators. Results demonstrated that the tissues of polian vesicle and nerve ring exhibited significant clock gene expression associated with the orchestration of circadian regulation, and that environmental light fluctuations exerted influence on the expression of these clock genes. However, a number of genes, such as AjArnt1 and AjCry1, maintained their circadian rhythmicity even under continuous light conditions. Moreover, we further investigated the circadian patterns of melatonin (MT), serotonin (5-HT), and dopamine (DA) secretion in A. japonicus, data that underscored the tissue-specific regulatory differences and the inherent adaptability to dynamic light environments. Collectively, these findings will provide the molecular mechanisms controlling the circadian rhythm in echinoderms and the candidate tissues playing the role of central oscillators in sea cucumbers.


Assuntos
Relógios Circadianos , Melatonina , Pepinos-do-Mar , Stichopus , Animais , Fotoperíodo , Stichopus/genética , Pepinos-do-Mar/genética , Ritmo Circadiano/genética , Expressão Gênica , Regulação da Expressão Gênica , Relógios Circadianos/genética
19.
Mar Environ Res ; 193: 106300, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38103303

RESUMO

Selecting high-quality seeds with long-term advantages in behavior, intestinal health, and growth are the key to improve production efficiency of sea cucumber aquaculture. It is proposed to distinguish the seed quality of sea cucumbers by color morphs. In the present study, we carried out a 6-week experiment to investigate behavior, intestinal health, and growth of small sea cucumbers Apostichopus japonicus in different color morphs. We found that dark-colored seeds of sea cucumber were significantly more adhesive than those with light-colored seeds. This indicates that the dark-colored seeds of A. japonicus are more adaptive in complex environments in stock enhancement. Food consumption and defecation outputs of dark-colored seeds were significantly higher than those of light-colored seeds. In addition, the feces of dark-colored seeds of sea cucumber had significantly lower crude protein content and better intestinal morphology, but there was no advantage in digestive enzyme activities. This suggests that there are potential digestive benefits in dark-colored seeds. Further, dark-colored seeds of A. japonicus showed significantly better intestinal microbiota composition and faster growth rate than that of light-colored seeds. In conclusion, the present results prove that dark-colored seeds of sea cucumber have long-term advantages in behavior, intestinal health and growth. Overall, this study provides important information for the early selection of seeds and the consequent production efficiency in sea cucumber aquaculture.


Assuntos
Pepinos-do-Mar , Stichopus , Animais , Dieta , Imunidade Inata , Aquicultura
20.
Microb Pathog ; 187: 106519, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38158142

RESUMO

Vibrio splendidus is one of the main pathogens caused diseases with a diversity of marine cultured animals, especially the skin ulcer syndrome in Apostichopus japonicus. However, limited virulence factors have been identified in V. splendidus. In this study, one aerAVs gene coding an aerolysin of V. splendidus was cloned and conditionally expressed in Escherichia coli. The haemolytic activity of the recombinant AerAVs was analyzed. Western blotting was used to study of the secretion pathway of proaerolysin, and it showed that the proaerolysin was secreted via both outer membrane vehicles and classical secretion pathways. Since no active protein of aerolysin was obtained, one aerolysin surface displayed bacterium DH5α/pAT-aerA was constructed, and its haemolytic activity and virulence were determined. The results showed that the AerAVs displayed on the surface showed obvious haemolytic activity and cytotoxic to the coelomocyte of A. japonicus. Artificial immerse infection separately using the DH5α/pAT or DH5α/pAT-aerA was conducted. The result showed that the mortality percent of sea cucumber A. japonicus challenged with DH5α/pAT-aerA was 38.89 % higher than that challenged with the control strain DH5α/pAT, and earlier death occurred. Combined all the results indicates that aerolysin with the haemolytic activity and cytotoxic activity is a virulence factor of V. splendidus.


Assuntos
Toxinas Bacterianas , Proteínas Citotóxicas Formadoras de Poros , Stichopus , Vibrioses , Vibrio , Animais , Vibrioses/microbiologia , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Clonagem Molecular , Stichopus/genética , Stichopus/microbiologia , Imunidade Inata
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...